
regression - Converting standardized betas back to original variables ...
I have a problem where I need to standardize the variables run the (ridge regression) to calculate the ridge estimates of the betas. I then need to convert these back to the original variables scale.
What's the difference between correlation and simple linear regression ...
Aug 1, 2013 · Note that one perspective on the relationship between regression & correlation can be discerned from my answer here: What is the difference between doing linear regression on y with x …
Multivariable vs multivariate regression - Cross Validated
Feb 2, 2020 · Multivariable regression is any regression model where there is more than one explanatory variable. For this reason it is often simply known as "multiple regression". In the simple …
How should outliers be dealt with in linear regression analysis?
What statistical tests or rules of thumb can be used as a basis for excluding outliers in linear regression analysis? Are there any special considerations for multilinear regression?
When conducting multiple regression, when should you center your ...
Jun 5, 2012 · In some literature, I have read that a regression with multiple explanatory variables, if in different units, needed to be standardized. (Standardizing consists in subtracting the mean and dividin...
regression - Difference between forecast and prediction ... - Cross ...
I was wondering what difference and relation are between forecast and prediction? Especially in time series and regression? For example, am I correct that: In time series, forecasting seems to mea...
regression - What is residual standard error? - Cross Validated
A quick question: Is "residual standard error" the same as "residual standard deviation"? Gelman and Hill (p.41, 2007) seem to use them interchangeably.
regression - Interpreting the residuals vs. fitted values plot for ...
None of the three plots show correlation (at least not linear correlation, which is the relevant meaning of 'correlation' in the sense in which it is being used in "the residuals and the fitted values are …
How to derive the standard error of linear regression coefficient
another way of thinking about the n-2 df is that it's because we use 2 means to estimate the slope coefficient (the mean of Y and X) df from Wikipedia: "...In general, the degrees of freedom of an …
regression - Linear vs Nonlinear Machine Learning Algorithms - Cross ...
Jan 6, 2021 · Three linear machine learning algorithms: Linear Regression, Logistic Regression and Linear Discriminant Analysis. Five nonlinear algorithms: Classification and Regression Trees, Naive …